OPC Unified Architecture, Part 11
ii
Draft 1.01

OPC Unified Architecture, Part 11
28
Draft 1.01

[image: image1.wmf]

F

O

U

N

D

A

T

I

O

N

®

OPC Unified Architecture
Specification

Part 11: Historical Access
Draft
Version 1.01
July 22th, 2008
Send comments to:
UAcomments@opcfoundation.org
	Specification Type
	Industry Standard Specification
	
	

	
	
	
	

	Title:
	OPC Unified Architecture

Historical Access
	Date:
	July 22th, 2008

	
	
	
	

	Version:
	Draft 1.01
	Software
	MS-Word

	
	
	Source:
	OPC UA Part 11 - Historical Access DRAFT 1.01.13.doc

	
	
	
	

	Author:
	OPC Foundation
	Status:
	Draft

	
	
	
	

CONTENTS

Page

viFOREWORD

AGREEMENT OF USE
vi
1
Scope
1
2
Reference documents
1
3
Terms, definitions, and abbreviations
1
3.1
OPC UA Part 1 terms
1
3.2
OPC UA Part 3 terms
2
3.3
OPC UA Part 4 terms
2
3.4
OPC UA Part 13 terms
2
3.5
OPC UA Historical Access terms
2
3.5.1
Annotation
2
3.5.2
BoundingValues
2
3.5.3
HistoricalNode
2
3.5.4
HistoricalDataNode
3
3.5.5
HistoricalEventNode
3
3.5.6
Modified values
3
3.5.7
Raw data
3
3.5.8
StartTime / EndTime
3
3.5.9
TimeDomain
4
3.6
Abbreviations and symbols
4
4
Concepts
5
4.1
General
5
4.2
Data Architecture
5
4.3
Timestamps
5
4.4
Bounding values and time domain
6
4.5
Changes in AddressSpace over time
7
4.6
Historical Information Model
8
4.6.1
Historical Audit Events
8
4.6.2
HistoricalDataNodes
11
4.6.3
HistoricalDataNodes Address Space Model
13
4.6.4
HistoricalDataNodes Attributes
14
4.6.5
HistoricalEventNodes
14
4.6.6
HistoricalEventNodes Address Space model
15
4.6.7
HistoricalEventNodes Attributes
16
4.7
History Objects
17
4.7.1
General
17
4.7.2
HistoryServerCapabilitiesType
17
4.8
History DataType definitions
18
4.8.1
Annotation DataType
18
5
Historical Access specific usage of Services
18
5.1
General
18
5.2
Historical Nodes StatusCodes
19
5.2.1
Overview
19
5.2.2
Operation level result codes
19
5.2.3
Semantics changed
19
5.3
HistoryReadDetails parameters
20
5.3.1
Overview
20
5.3.2
ReadEventDetails structure
20
5.3.3
ReadRawModifiedDetails structure
21
5.3.4
ReadProcessedDetails structure
23
5.3.5
ReadAtTimeDetails structure
24
5.4
HistoryData parameters
24
5.4.1
Overview
24
5.4.2
HistoryData type
24
5.4.3
HistoryEvent type
25
5.5
HistoryUpdateDetails parameter
25
5.5.1
Overview
25
5.5.2
UpdateDataDetails structure
26
5.5.3
UpdateEventDetails structure
27
5.5.4
DeleteRawModifiedDetails structure
28
5.5.5
DeleteAtTimeDetails structure
29
5.5.6
DeleteEventDetails structure
29

29
Annex A Client Conventions
30
A.1
How clients may request timestamps
30
A.2
Converting Historical Timestamps Across Timezones
31

Figures

5Figure 1 - Possible OPC UA Server supporting Historical Access

Figure 2 – Representation of a Variable with History in the AddressSpace
13
Figure 3 – Representation of an Event with History in the AddressSpace
16

Tables

7Table 1 – Bounding Value Examples

Table 2 – AuditHistoryEventUpdateEventType Definition
8
Table 3 – AuditHistoryValueUpdateEventType Definition
9
Table 4 – AuditHistoryDeleteEventType Definition
10
Table 5 – AuditHistoryRawModifyDeleteEventType Definition
10
Table 6 – AuditHistoryAtTimeDeleteEventType Definition
11
Table 7 – AuditHistoryEventDeleteEventType Definition
11
Table 8 – HistoricalConfigurationType Definition
12
Table 9 – ExceptionDeviationFormat Values
13
Table 10 – HistoricalEventConfigurationType Definition
15
Table 11 – HistoryServerCapabilitiesType Definition
17
Table 12 – Annotation Structure
18
Table 13 – Annotation Definition
18
Table 14 – Bad operation level result codes
19
Table 15 – Good operation level result codes
19
Table 16 – HistoryReadDetails functionality
20
Table 17 – ReadEventDetails
20
Table 18 – ReadRawModifiedDetails
21
Table 19 – ReadProcessedDetails
23
Table 20 – ReadAtTimeDetails
24
Table 21 – HistoryData Details
25
Table 22 – HistoryEvent Details
25
Table 23 – HistoryUpdateDetails functionality
26
Table 24 – UpdateDataDetails
26
Table 25 – UpdateEventDetails
27
Table 26 – DeleteRawModifiedDetails
28
Table 27 – DeleteAtTimeDetails
29
Table 28 – DeleteEventDetails
29
Table 29 –Time Keyword Definitions
31
Table 30 –Time Offset Definitions
31

OPC Foundation

UNIFIED ARCHITECTURE –

FOREWORD

This specification is for developers of OPC UA clients and servers. The specification is a result of an analysis and design process to develop a standard interface to facilitate the development of servers and clients by multiple vendors that shall inter-operate seamlessly together.

Copyright © 2006, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies must be obtained on an individual basis, directly from the OPC Foundation Web site
http://www.opcfoundation.org.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may be required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,. 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware and software to use certification marks, trademarks or other special designations to indicate compliance with these materials. Products developed using this specification may claim compliance or conformance with this specification if and only if the software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these requirements may claim only that the product was based on this specification and must not claim compliance or conformance with this specification.

Trademarks

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING
The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo constant review and refinement. Readers are encouraged to report any issues and view any existing errata here:
http://www.opcfoundation.org/errata
1 Scope
This specification is part of the overall OPC Unified Architecture specification series and defines the information model associated with Historical Access (HA). It particularly includes additional and complementary descriptions of the NodeClasses and Attributes needed for Historical Access, additional standard Properties, and other information and behaviour.

The complete AddressSpace model including all NodeClasses and Attributes is specified in [UA Part 3]. The predefined information model is defined in [UA Part 5]. The services to detect and access historical data and events, and description of the ExtensibleParameter types are specified in [UA Part 4].

2 Reference documents

[UA Part 1]
OPC UA Specification: Part 1 – Concepts, Version 1.0 or later

http://www.opcfoundation.org/UA/Part1/
[UA Part 3]
OPC UA Specification: Part 3 – Address Space Model, Version 1.0 or later

http://www.opcfoundation.org/UA/Part3/
[UA Part 4]
OPC UA Specification: Part 4 – Services, Version 1.0 or later

http://www.opcfoundation.org/UA/Part4/
[UA Part 5]
OPC UA Specification: Part 5 – Information Model, Version 1.0 or later

http://www.opcfoundation.org/UA/Part5/
[UA Part 7]
OPC UA Specification: Part 7 – Profiles, Version 1.0 or later

http://www.opcfoundation.org/UA/Part7/
[UA Part 8]
OPC UA Specification: Part 8 – Data Access, Version 1.0 or later

http://www.opcfoundation.org/UA/Part8/
[UA Part 9]
OPC UA Specification: Part 9 – Alarm & Conditions, Version 1.0 or later

http://www.opcfoundation.org/UA/Part9/
[UA Part 13]
OPC UA Specification: Part 13 – Aggregates, Version 1.0 or later

http://www.opcfoundation.org/UA/Part13/
3 Terms, definitions, and abbreviations

3.1 OPC UA Part 1 terms

The following terms defined in [UA Part 1] apply.

1) AddressSpace

2) Attribute

3) BrowseName

4) Event

5) Node

6) NodeId

7) Notification

8) Object

9) ObjectType
3.2 OPC UA Part 3 terms

The following terms defined in [UA Part 3] apply.

10) AccessLevel

11) DataVariable

12) EventType

13) Property

14) UtcTime

15) Variable

3.3 OPC UA Part 4 terms

The following terms defined in [UA Part 4] apply.
16) DataValue

17) ExtensibleParameter

18) StatusCode

19) ServerTimestamp
20) SourceTimestamp
3.4 OPC UA Part 13 terms

The following terms defined in [UA Part 13] apply.

1) Aggregate
2) SlopedInterpolation

3) SteppedInterpolation

4) Uncertain data
3.5 OPC UA Historical Access terms
3.5.1

3.5.2 Annotation

An Annotation is a user entered comment that is associated with an item at a given instance in time. There does not have to be a value stored at that time.

3.5.3 BoundingValues
BoundingValues are the values that are associated with the starting and ending time of an interval specified when reading from the historian. BoundingValues are required by clients to determine the starting and ending values when requesting raw data over a time range. If a raw data value exists at the start or end point, it is considered the bounding value even though it is part of the data request. If no raw data value exists at the start or end point, then the server will determine the boundary value, which may require data from a data point outside of the requested range. See Clause 4.4 for details on using BoundingValues.
3.5.4 HistoricalNode
A HistoricalNode is a term used in this document to represent any Object, Variable, Property or View in the AddressSpace for which a client may read and/or update historical data or events. The terms “HistoricalNode’s history” or “history of a HistoricalNode” will refer to the time series data or events stored for this HistoricalNode where HistoricalNode is an Object, Variable, Property or View. The term HistoricalNode refers to both HistoricalDataNodes and HistoricalEventNodes, and is used when referencing aspects of the specification that apply to accessing historical data and events.

3.5.5 HistoricalDataNode
A HistoricalDataNode represents any Variable or Property in the AddressSpace for which a client may read and/or update historical data. The terms “HistoricalDataNode’s history” or “history of a HistoricalDataNode” will refer to the time series data stored for this HistoricalNode where HistoricalNode is an Object, Variable, Property or View. Some examples of such data are:
· device data (like temperature sensors)

· calculated data

· status information (open/closed, moving)

· dynamically changing system data (like stock quotes)

· diagnostic data

The term HistoricalDataNodes is used when referencing aspects of the specification that apply to accessing historical data only.

3.5.6 HistoricalEventNode

A HistoricalEventNode represents any Object or View in the AddressSpace for which a client may read and/or update historical events. The terms “HistoricalEventNode’s history” or “history of a HistoricalEventNode” will refer to the time series events stored in some historical system. Some examples of such data are:
· notifications

· system alarms

· operator action events

· system triggers (such as new orders to be processed)

The term HistoricalEventNode is used when referencing aspects of the specification that apply to accessing historical events only.

3.5.7

3.5.8

3.5.9

3.5.10

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

3.5.11 Modified values

A modified value is a HistoricalDataNode’s value that has been changed (or deleted) after it was stored in the historian. A lab data entry value is not a modified value, but if a user corrects a lab value, the original value would be considered a modified value, and would be returned during a request for modified values. Unless specified otherwise, all historical services operate on the current, or most recent, value for the specified HistoricalDataNode at the specified timestamp. Requests for modified values are used to access values that have been superseded.

3.5.12 Raw data

Raw data is data that is stored within the historian for a HistoricalDataNode . The data may be all data collected for the DataValue or it may be some subset of the data depending on the historian and the storage rules invoked when the item values were saved.

3.5.13 StartTime / EndTime

The StartTime and EndTime specify the bounds of a history request and define the time domain of the request. For all requests, a value falling at the end time of the time domain is not included in the domain, so that requests made for successive, contiguous time domains will include every value in the archive exactly once.
3.5.14 TimeDomain

The interval of time covered by a particular request, or by a particular response. In general, if the start time is earlier than or the same as the end time, the time domain is considered to begin at the start time and end just before the end time; if the end time is earlier than the start time, the time domain still begins at the start time and ends just before the end time, with time "running backward" for the particular request and response. In both cases, any value which falls exactly at the end time of the TimeDomain is not included in the TimeDomain. See the examples in section 4.4. BoundingValues effect the time domain as described in section 4.4.
All timestamps which can legally be represented in a UtcTime DataType are valid timestamps, and the server may not return an invalid argument result code due to the timestamp being outside of the range for which the server has data. See [UA Part 3] for a description of the range and granularity of this DataType. Servers are expected to handle out-of-bounds timestamps gracefully, and return the proper StatusCodes to the clients

3.6 Abbreviations and symbols

DA
Data Access

HDA
Historical Data Access
UA
Unified Architecture

4 Concepts

4.1 General

The OPC UA Historical Access specification defines the representation of historical time series data and historical event data in the OPC Unified Architecture. Included is the specification of the representation of historical data and events in the OPC UA AddressSpace.
4.2 Data Architecture
An OPC UA Server supporting Historical Access provides one or more OPC UA Clients with transparent access to different historical data and/or historical event sources (e.g. process historians, event historians etc.).

The historical data or events may be located in a proprietary data archive, database or a short term buffer within memory. An OPC UA Server supporting Historical Access may or may not provide historical data and events for some or all available Variables, Objects or Views within the server AddressSpace. As with the other information models, the AddressSpace of an OPC UA Server supporting Historical Access is accessed via the View or Query service sets.

An OPC UA Server supporting Historical Access provides a way to access or communicate to a set of historical data and/or historical event sources. The types of sources available are a function of the server implementation.

Figure 1 illustrates how the AddressSpace of a UA server might consist of a broad range of different historical data and/or historical event sources.

[image: image2.wmf]Operator

Station

2

Operator

Display

Event

Logger

,

etc

.

OPC UA HA Server

server

client

OPC UA HA

Server

OPC DA

Server

OPC HDA

Server

Proprietary

Data Server

OPC A

&

E

Server

Figure 1 - Possible OPC UA Server supporting Historical Access

The server may be implemented as a stand alone OPC UA Server that collects data from another OPC UA Server, a legacy OPC HDA Server, a legacy OPC DA Server, a legacy OPC A&E Server or another data source. The clients that reference the OPC UA Server supporting Historical Access for historical data may be simple trending packages that just desire values over a given time frame or they may be complex reports that require data in multiple formats.

4.3 Timestamps
The nature of OPC UA Historical Access requires that a single timestamp reference be used to relate the multiple data points or events, and clients may request which timestamp will be used as the reference. See [UA Part 4] for details on the TimestampsToReturn enumeration. An OPC UA Server supporting Historical Access will treat the various timestamp settings as described below.
For HistoricalDataNodes:

SOURCE_0

Return the SourceTimestamp. SourceTimestamp is used to determine which historical data values are returned.

SERVER_1

Return the ServerTimestamp. ServerTimestamp is used to determine which historical data values are returned.

BOTH_2

Return both the SourceTimestamp and ServerTimestamp. SourceTimestamp is used to determine which historical data values are returned.

NEITHER_3
This is not a valid setting for any HistoryRead accessing HistoricalDataNodes.
For HistoricalEventNodes:

SOURCE_0

Return the SourceTimestamp. SourceTimestamp is used to determine which historical events are returned.

SERVER_1

This is not a valid setting for any HistoryRead accessing HistoricalEventNodes.
BOTH_2

This is not a valid setting for any HistoryRead accessing HistoricalEventNodes.
NEITHER_3
This is not a valid setting for any HistoryRead accessing HistoricalEventNodes.
Any reference to Timestamps through out this specification will represent either ServerTimestamp or SourceTimestamp as dictated by the type requested in the ReadHistory service. Some servers may not support historizing both SourceTimestamp and ServerTimestamp, but it is expect that all servers will support historizing SourceTimestamp (see [UA Part 7] for details on Server Profiles).
4.4 Bounding values and time domain

When accessing HistoricalDataNodes via the ReadHistory Service, requests can set a flag, returnBounds, indicating that a BoundingValue are requested. For a complete description of the Extensible Parameter HistoryReadDetails that include StartTime, EndTime and NumValuePerNode, see Section 5.3. The concept of bounding values and how they affect the time domain that is requested as part of the ReadHistory request is further explained in this section. This section also provides examples of TimeDomains to further illustrate the expected behaviour.

When making a request for historical data using the ReadHistory Service, required parameters include a startTime and endTime. These two parameters define the TimeDomain of the ReadHistory request. This TimeDomain includes all values between the StartTime and EndTime, and any value that falls exactly on the StartTime, but not any value that falls exactly on the EndTime. For example, assuming bounding values are not requested, if data is requested from 1:00 to 1:05, and then from 1:05 to 1:10, a value that exists at exactly 1:05 would be included in the second request, but not in the first.

Given that a historian has values stored at 5:00, 5:02, 5:03, 5:05 and 5:06, the data when using the Read Raw functionality is given by Table 1. In the table, FIRST stands for a tuple with a value of Null, a timestamp of the specified StartTime, and a StatusCode of Bad_NoBound. LAST stands for a tuple with a value of Null, a timestamp of the specified EndTime, and a StatusCode of Bad_NoBound
Table 1 – Bounding Value Examples
	Start Time
	End Time
	numValuesPerNode
	Bounds
	Data Returned

	5:00
	5:05
	0
	Yes
	5:00, 5:02, 5:03, 5:05

	5:00
	5:05
	0
	No
	5:00, 5:02, 5:03

	5:01
	5:04
	0
	Yes
	5:00, 5:02, 5:03, 5:05

	5:01
	5:04
	0
	No
	5:02, 5:03

	5:05
	5:00
	0
	Yes
	5:05, 5:03, 5:02, 5:00

	5:05
	5:00
	0
	No
	5:05, 5:03, 5:02

	5:04
	5:01
	0
	Yes
	5:05, 5:03, 5:02, 5:00

	5:04
	5:01
	0
	No
	5:03, 5:02

	4:59
	5:05
	0
	Yes
	FIRST, 5:00, 5:02, 5:03, 5:05

	4:59
	5:05
	0
	No
	5:00, 5:02, 5:03

	5:01
	5:07
	0
	Yes
	5:00, 5:02, 5:03, 5:05, 5:06, LAST

	5:01
	5:07
	0
	No
	5:02, 5:03, 5:05, 5:06

	5:00
	5:05
	3
	Yes
	5:00, 5:02, 5:03

	5:00
	5:05
	3
	No
	5:00, 5:02, 5:03

	5:01
	5:04
	3
	Yes
	5:00, 5:02, 5:03

	5:01
	5:04
	3
	No
	5:02, 5:03

	5:05
	5:00
	3
	Yes
	5:05, 5:03, 5:02

	5:05
	5:00
	3
	No
	5:05, 5:03, 5:02

	5:04
	5:01
	3
	Yes
	5:05, 5:03, 5:02

	5:04
	5:01
	3
	No
	5:03, 5:02

	4:59
	5:05
	3
	Yes
	FIRST, 5:00, 5:02

	4:59
	5:05
	3
	No
	5:00, 5:02, 5:03

	5:01
	5:07
	3
	Yes
	5:00, 5:02, 5:03

	5:01
	5:07
	3
	No
	5:02, 5:03, 5:05

	5:00
	DateTime.Min
	3
	Yes
	5:00, 5:02, 5:03

	5:00
	DateTime.Min
	3
	No
	5:00, 5:02, 5:03

	5:00
	DateTime.Min
	6
	Yes
	5:00, 5:02, 5:03, 5:05, 5:06, LAST

	5:00
	DateTime.Min
	6
	No
	5:00, 5:02, 5:03, 5:05, 5:06

	DateTime.Min
	5:06
	3
	Yes
	5:06,5:05,5:03

	DateTime.Min
	5:06
	3
	No
	5:06,5:05,5:03

	DateTime.Min
	5:06
	6
	Yes
	5:06,5:05,5:03,5:02,5:00,FIRST

	DateTime.Min
	5:06
	6
	No
	5:06, 5:05, 5:03, 5:02, 5:00

	4:48
	4:48
	0
	Yes
	FIRST,5:00

	4:48
	4:48
	0
	No
	NODATA

	4:48
	4:48
	1
	Yes
	FIRST

	4:48
	4:48
	1
	No
	NODATA

	4:48
	4:48
	2
	Yes
	FIRST,5:00

	5:00
	5:00
	0
	Yes
	5:00,5:02

	5:00
	5:00
	0
	No
	5:00

	5:00
	5:00
	1
	Yes
	5:00

	5:00
	5:00
	1
	No
	5:00

	5:01
	5:01
	0
	Yes
	5:00, 5:02

	5:01
	5:01
	0
	No
	NODATA

	5:01
	5:01
	1
	Yes
	5:00

	5:01
	5:01
	1
	No
	NODATA

4.5 Changes in AddressSpace over time
Clients use the browse Services of the View Service Set to navigate through the AddressSpace to discover the Properties supported by one or more specified Nodes (see [UA Part 4]). These Services provide the most current information about the AddressSpace. It is possible and probable that the AddressSpace of a Server will change over time (i.e. TypeDefinitions may change; NodeIds may be modified, added or deleted).
Server developers and administrators need to be aware that modifying the AddressSpace may impact a Client’s ability to access historical information. If the history for a HistoricalNode is still required, but the HistoricalNode is no longer an active point, the Object should be maintained in the AddressSpace, with the appropriate AccessLevel Attribute and Historizing Attribute settings (see [UA Part 3] for details on access levels).
4.6 Historical Information Model
4.6.1 Historical Audit Events
4.6.1.1 General
AuditEvents are generated as a result of an action taken on the server by a client of the server. For example, in response to a client issuing a write to a Variable, the server would generate an AuditEvent describing the Variable as the source and the user and client session as the initiators of the Event.

Servers must generate events of the AuditHistoryUpdateEventType or a sub-type of this type for all invocations of the HistoryUpdate service on any HistoricalNode. See [UA Part 3] and [UA Part 5] for details on the AuditHistoryUpdateEventType model. In the case where the HistoryUpdate service is invoked to insert HistoricalEvents, the AuditHistoryEventUpdateEventType Event must include the EventId of the inserted Event and a description that indicates that the Event was inserted. In the case where the HistoryUpdate service is invoked to delete records, the AuditHistoryDeleteEventType or one of its sub-types must be generated. See Section 5.5 for details on updating historical data or events.
In particular using the Delete raw or Delete modified functionality must generate an AuditHistoryRawModifyDeleteEventType Event or a sub-type of it. using the Delete at time functionality must generate an AuditHistoryAtTimeDeleteEventType Event or a sub-type of it. Using the Delete event functionality must generate an AuditHistoryEventDeleteEventType Event or a sub-type of it. All other updates must follow the guidelines provided in the AuditHistoryUpdateEventType Model.

4.6.1.2 AuditHistoryEventUpdateEventType

This is a subtype of AuditHistoryUpdateEventType and is used for categorization of History event update related Events. This type follows all behaviour of its parent type. Its representation in the AddressSpace is formally defined in Table 2.

Table 2 – AuditHistoryEventUpdateEventType Definition

	Attribute
	Value

	BrowseName
	AuditHistoryEventUpdateEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditHistoryUpdateEventType defined in [UA Part 3], i.e. it has HasProperty References to the same Nodes.

	HasProperty
	Variable
	UpdatedNode
	NodeId
	PropertyType
	Mandatory

	HasProperty
	Variable
	PerformInsertReplace
	Enumeration
	PropertyType
	Mandatory

	
	
	
	
	
	

	HasProperty
	Variable
	Filter
	EventFilter
	PropertyType
	Mandatory

	HasProperty
	Variable
	NewValues
	HistoryEventNotification[]
	PropertyType
	Mandatory

	HasProperty
	Variable
	OldValues
	HistoryEventNotification[]
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditHistoryUpdateEventType. Their semantic is defined in [UA Part 5].
The NodeAttributeId identifies the Attribute that was written on the SourceNode.

The PerformInsertReplace enumeration reflect the parameter on the service call

The Filter reflects the event filter passed on the call to select the events that are to be updated.

The NewValue identifies the value that was written to the Event.
The OldValue identifies the value that the Event contained before the write. It is acceptable for a server that does not have this information to report a null value. And in the case of an insert it is expected to be a null value
Both the NewValue and the OldValue will contain an Event with the appropriate fields, each with appropriate encoding used there values.
4.6.1.3 AuditHistoryValueUpdateEventType

This is a subtype of AuditHistoryUpdateEventType and is used for categorization of history value update related Events. This type follows all behaviour of its parent type. Its representation in the AddressSpace is formally defined in Table 3.

Table 3 – AuditHistoryValueUpdateEventType Definition

	Attribute
	Value

	BrowseName
	AuditHistoryValuetUpdateEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditHistoryUpdateEventType defined in [UA Part 3], i.e. it has HasProperty References to the same Nodes.

	HasProperty
	Variable
	UpdatedNode
	NodeId
	PropertyType
	Mandatory

	HasProperty
	Variable
	PerformInsertReplace
	Enumeration
	PropertyType
	Mandatory

	
	
	
	
	
	

	HasProperty
	Variable
	NewValues
	DataValue[]
	PropertyType
	Mandatory

	HasProperty
	Variable
	OldValues
	DataValue[]
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditHistoryUpdateEventType. Their semantic is defined in [UA Part 5].
The NodeAttributeId identifies the Attribute that was written on the SourceNode.

The PerformInsertReplace enumeration reflect the parameter on the service call

The NewValue identifies the value that was written to the Event.
The OldValue identifies the value that the Event contained before the write. It is acceptable for a server that does not have this information to report a null value. And in the case of an insert it is expected to be a null value
Both the NewValue and the OldValue will contain a value in the DataType and encoding used for writing the value.
4.6.1.4 AuditHistoryDeleteEventType

This is a subtype of AuditHistoryUpdateEventType and is used for categorization of history delete related Events. This type follows all behaviour of its parent type. Its representation in the AddressSpace is formally defined in Table 4.

Table 4 – AuditHistoryDeleteEventType Definition

	Attribute
	Value

	BrowseName
	AuditHistoryDeleteEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditHistoryUpdateEventType defined [UA Part 3], i.e. it has HasProperty References to the same Nodes.

	HasProperty
	Variable
	UpdatedNode
	NodeId
	PropertyType
	Mandatory

	HasSubtype
	ObjectType
	AuditHistoryRawModifyDeleteEventType
	
	
	

	HasSubtype
	ObjectType
	AuditHistoryAtTimeDeleteEventType
	
	
	

	HasSubtype
	ObjectType
	AuditHistoryEventDeleteEventType
	
	
	

This EventType inherits all Properties of the AuditUpdateEventType. Their semantic is defined in [UA Part 5].
The NodeId identifies the NodeId that was used for the delete operation.

4.6.1.5 AuditHistoryRawModifyDeleteEventType

This is a subtype of AuditHistoryDeleteEventType and is used for categorization of history delete related Events. This type follows all behaviour of its parent type. Its representation in the AddressSpace is formally defined in Table 5.

Table 5 – AuditHistoryRawModifyDeleteEventType Definition

	Attribute
	Value

	BrowseName
	AuditHistoryRawModifyDeleteEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditHistoryDeleteEventType defined in Clause 4.6.1.4 , i.e. it has HasProperty References to the same Nodes.

	HasProperty
	Variable
	IsDeleteModified
	Boolean
	PropertyType
	Mandatory

	HasProperty
	Variable
	StartTime
	UtcTime
	PropertyType
	Mandatory

	HasProperty
	Variable
	EndTime
	UtcTime
	PropertyType
	Mandatory

	HasProperty
	Variable
	OldValues
	DataValue[]
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditHistoryDeleteEventType. Their semantic is defined in Clause 4.6.1.4.
The isDeleteModified reflect the isDeleteModified parameter of the call
The StartTime reflect the starting time parameter of the call.

The EndTime reflect the ending time parameter of the call.

The OldValues identifies the value that history contained before the delete. A server shod report all deleted values. It is acceptable for a server that does not have this information to report a null value. The OldValues will contain a value in the DataType and encoding used for writing the value.
4.6.1.6 AuditHistoryAtTimeDeleteEventType

This is a subtype of AuditHistoryDeleteEventType and is used for categorization of history delete related Events. This type follows all behaviour of its parent type. Its representation in the AddressSpace is formally defined in Table 6.

Table 6 – AuditHistoryAtTimeDeleteEventType Definition

	Attribute
	Value

	BrowseName
	AuditHistoryAtTimeDeleteEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditHistoryDeleteEventType defined in Clause 4.6.1.4, i.e. it has HasProperty References to the same Nodes.

	HasProperty
	Variable
	ReqTimes
	UtcTime[]
	PropertyType
	Mandatory

	HasProperty
	Variable
	OldValues
	DataValues[]
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditHistoryDeleteEventType. Their semantic is defined in Clause 4.6.1.4.
The ReqTimes reflect the request time parameter of the call.

The OldValues identifies the value that history contained before the delete. A server shod report all deleted values. It is acceptable for a server that does not have this information to report a null value. The OldValues will contain a value in the DataType and encoding used for writing the value.
4.6.1.7 AuditHistoryEventDeleteEventType

This is a subtype of AuditHistoryDeleteEventType and is used for categorization of history delete related Events. This type follows all behaviour of its parent type. Its representation in the AddressSpace is formally defined in Table 7.

Table 7 – AuditHistoryEventDeleteEventType Definition

	Attribute
	Value

	BrowseName
	AuditHistoryEventDeleteEventType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherit the Properties of the AuditHistoryDeleteEventType defined in Clause 4.6.1.4, i.e. it has HasProperty References to the same Nodes.

	HasProperty
	Variable
	EventIds
	ByteString[]
	PropertyType
	Mandatory

	HasProperty
	Variable
	OldValues
	HistoryEventNotifaction[]
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditHistoryDeleteEventType. Their semantic is defined in Clause 4.6.1.4.
The EventIds reflect the EventIds parameter of the call
The OldValues identifies the value that history contained before the delete. A server shod report all deleted values. It is acceptable for a server that does not have this information to report a null value. The OldValues will contain a value in the DataType and encoding used for writing the value.
4.6.2 HistoricalDataNodes
4.6.2.1 General
The Historical Data model defines additional ReferenceTypes, ModellingRules and ObjectTypes. These descriptions also include required use cases for HistoricalDataNodes.
4.6.2.2 HasHistoricalConfiguration

The HasHistoricalConfiguration ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to bind a DataVariable or a Property to its HistoricalConfigurationType Object. All DataVariables and Properties that expose historical data must have at least one HasHistoricalConfiguration reference.
The SourceNode of this ReferenceType must be a DataVariable or Property. The TargetNode must be an Object of the ObjectType HistoricalConfigurationType.

Multiple DataVariables or Properties may reference the same HistoricalConfigurationType Object.
4.6.2.3 HistoricalConfigurationType
The Historical Access Data model extends the standard type model by defining an additional ObjectType, the HistoricalConfigurationType This HistoricalConfigurationType defines the general characteristics of a node that defines the historical configuration of any variable or property that is defined to contain history. It is formally defined in Table 8.

Table 8 – HistoricalConfigurationType Definition

	Attribute
	Value

	BrowseName
	HistoricalConfigurationType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	

	HasComponent
	Object
	AggregateConfiguration
	--
	AggregateConfigurationType
	Mandatory

	HasProperty
	Variable
	Stepped
	Boolean
	PropertyType
	Mandatory

	HasProperty
	Variable
	Definition
	String
	PropertyType
	Optional

	HasProperty
	Variable
	MaxTimeInterval
	Duration
	PropertyType
	Optional

	HasProperty
	Variable
	MinTimeInterval
	Duration
	PropertyType
	Optional

	HasProperty
	Variable
	ExceptionDeviation
	Double
	PropertyType
	Optional

	HasProperty
	Variable
	ExceptionDeviationFormat
	Enum
	PropertyType
	Optional

The AggregateConfiguration Object contains Variables that indicates how the Server treats aggregate specifc functionality such as handing Uncertain data. Defined in [UA Part 13]
The Stepped Variable specifies whether the historical data was collected in such a manner that it should be displayed as sloped interpolation (sloped Lines between point) or as SteppedInterpolation (vertically-connected horizontal lines between points) when raw data is examined. This property also effect how some Aggregates are calculated. A value of True indicates stepped interpolation mode. A value of False indicates SlopedInterpolated mode. The default value is False.

The Definition Variable is a vendor-specific, human readable string that specifies how the value of this HistoricalDataNode is calculated. Definition is non-localized and will often contain an equation that can be parsed by certain clients.

Example:

Definition ::= “(TempA – 25) + TempB”

The MaxTimeInterval Variable specifies the maximum interval between data points in the history repository regardless of their value change (see [UA Part 3] for definition of Duration).
The MinTimeInterval Variable specifies the minimum interval between data points in the history repository regardless of their value change (see [UA Part 3] for definition of Duration).
The ExceptionDeviation Variable specifies the minimum amount that the data for the HistoricalDataNode must change in order for the change to be reported to the history database.

The ExceptionDeviationFormat Variable specifies how the ExceptionDeviation is determined. Its values are defined in Table 9.

Table 9 – ExceptionDeviationFormat Values

	Value
	Description

	UNKNOWN
	ExceptionDeviation type is Unknown or not specificied.

	ABSOLUTE_VALUE
	ExceptionDeviation is an absolute Value.

	PERCENT_OF_VALUE
	ExceptionDeviation is a percent of Value.

	PERCENT_OF_RANGE
	ExceptionDeviation is a percent of InstrumentRange (See [UA Part 8])

	PERCENT_OF_EU_RANGE
	ExceptionDeviation is a percent of EURange (See [UA Part 8])

4.6.2.4 HasAnnotations

The HasAnnotationsType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to bind a DataVariable or a Property to its HasAnnotationsType Object.
The SourceNode of this ReferenceType must be a HistroicalDataNode. The TargetNode must be an Object of the DataType Annotation. See clause 4.8.1
Multiple HistoricalDataNodes may reference the same Annotations Node.
4.6.3 HistoricalDataNodes Address Space Model

HistoricalDataNodes are always part of other Nodes in the AddressSpace. They are never defined by themselves. A simple example of a container for HistoricalDataNodes would be a “Folder Object”. But it can be an Object of any other type.

Figure 2 illustrates the basic AddressSpace model of a DataVariable that includes History.

[image: image3.emf]Boiler_01(Object)

Pressure(Variable)

Attribute

Value

DataType

AccessLevel

Historizing

HasHistorical

Configuration

HistoricalConfiguration1

Instance

HistoricalConfigurationType

Type

Definitons

HasAnnotation

Annotation

Figure 2 – Representation of a Variable with History in the AddressSpace with Annotations
Each Variable with history must have the Historizing Attribute (see [UA Part 3]) defined and include a HasHistoricalConfiguration reference. The HistoricalConfigurationType instance must define the stepped property, but may also define any of the optional Properties.
Not every Variable in the AddressSpace might contain history data. To see if history data is available, a client will look for the HistoryRead/Write states in the AccessLevel Attribute (see [UA Part 3] for details on use of this Attribute).
Figure 2 only shows a subset of Attributes and Properties. Other Attributes that are defined for Variables in [UA Part 3], may also be available.
Not every HistoricalDataNode in the AddressSpace might contain Annotation data. The HasAnnonation reference indicates wheter or not a HistoricalDataNode has Annotation data at some point in history. Annotation data is access using the standard HistoyRead functions with the Annotation NodeId.
4.6.4 HistoricalDataNodes Attributes
This section lists the Attributes of Variables that have particular importance for historical data. They are specified in detail in [UA Part 3]. The following Attributes are particularly important for HistoricalDataNodes.

· Value

· DataType

· AccessLevel
· Historizing
Value is the value of the Variable. Its data type is defined by the DataType and ValueRank Attributes. This is the Attribute for which historical data is collected. The AccessLevel attribute defines the server’s basic ability to access history data for this Variable.
When a client requests the Value attribute, the server in addition always returns a StatusCode (the quality and the server’s ability to access/provide the value) and a ServerTimestamp and/or a SourceTimestamp. See [UA Part 4] for details on StatusCode and the meaning of the two timestamps. Specific StatusCodes for HistoricalDataNodes are defined in Clause 5.2.
4.6.5 HistoricalEventNodes
4.6.5.1 General
The Historical Event model defines additional ReferenceTypes, ModellingRules and ObjectTypes. These descriptions also include required use cases for HistoricalEventNodes.
4.6.5.2 HasHistoricalEventConfiguration

The HasHistoricalEventConfiguration ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantics of this ReferenceType is to bind an Object which exposes an EventNotifier that exposes historical events (i.e. has the EventNotifier Attribute for HistoryRead or HistoryWrite set to one) to a HistoricalEventConfigurationType Object. All objects which expose EventNotifiers that expose historical events must have a HasHistoricalEventConfiguration reference.

The SourceNode of this ReferenceType must be an Object which exposes an EventNotifier that exposes historical events. The TargetNode must be an Object of the ObjectType HistoricaEventlConfigurationType.

Multiple EventNotifiers may reference the same HistoricalEventConfigurationType Object.

4.6.5.3 HistoricalEventConfigurationType
The Historical Access Event model extends the standard type model by defining an additional ObjectType, the HistoricalEventConfigurationType This HistoricalEventConfigurationType defines the general characteristics of a node that defines the historical configuration of any Object that exposes an EventNotifier that exposes historical events. It is formally defined in Table 10
Table 10 – HistoricalEventConfigurationType Definition

	Attribute
	Value

	BrowseName
	HistoricalEventConfigurationType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	ModellingRule

	Subtype of the BaseObjectType defined in [UA Part 5]

	
	
	
	

	HasEventHistory
	ReferenceType
	HistoricalEvents01
	OptionalNew

4.6.5.4 HasEventHistory
The semantic of this ReferenceType is to relate EventTypes that are being historized to the object that they are available from. This ReferenceType and any subtypes are intended to be used for discovery of types of historical Events in a server. They are not required to be present for a server to historize Events. This ReferenceType is as described in [UA Part 3].
 This application of this ReferenceType further restricts the use as follows:

The SourceNode of this ReferenceType must be a Node that is of type HistoricalEventConfigurationType
The TargetNode of this ReferenceType must be the EventType that is available as historical events.
The Object of HistoricalEventConfigurationType can expose more then one of these references. The resulting list of EventType Nodes (and there sub types) is the summary list the types of Events that are available as historical events. A server that does not historize all attributes associated with a given EventType should define a new EventType that describes the attributes that are being historized and add a Reference to it from it's HistoricalEventConfigurationType Object. The BrowseName of the reference can be any name that is unique for the Object of HistoricalEventConfigurationType and follows the naming requirements of BrowseNames. A user should review all GenerateEvent references in the Object of HistoricalEventConfigurationType that is associated with the Object that is exposing historical events

4.6.6 HistoricalEventNodes Address Space model
HistoricalEventNodes are Objects or Views in the AddressSpace that expose historical Events. These Nodes are identified via the EventNotifier Attribute, and provide some historical subset of the Events generated by the server.
Each HistoricalEventNode is represented by an Object or View with a specific set of Attributes. Additional characteristics of HistoricalEventNodes are defined using Properties (i.e. Variables that are referenced using HasProperty References). For a detailed description of Variable and Properties see [UA Part 3]. This specification defines Properties that have been found useful for a large range of historical event clients.

Not every Object or View in the AddressSpace may be a HistoricalEventNode. To qualify as HistoricalEventNodes, a Node has to contain historical events. To see if historical events are available, a client will look for the HistoryRead/Write states in the EventNotifier Attribute. See [UA Part 3] for details on use of this Attribute.

Figure 3

 illustrates the basic AddressSpace model of an Event that includes History.

[image: image4.emf]Server

BaseEventType

Instance

HasHistorical

 EventConfiguration

PlantArea1Boiler1

HistoricalEventConfiguration1HistoricalEventConfiguration2

HasHistorical

 EventConfiguration

HasHistorical

 EventConfiguration

MyHistoricalEventConfigurationTypeHistoricalEventConfigurationType

AuditEvent

Type

SystemEvent

Type

MyHistoricalSystem

EventType

YourHistoricalSystem

EventType

AuditSecurity

EventType

Auditupdate

EventType

AuditChannel

EventType

AuditSession

EventType

DeviceFailure

EventType

RefreshStart

EventType

RefreshEnd

EventType

RefreshRequired

EventType

MyDeviceFailure

EventType

MyHistoricalDevice

FailureEventType

MyHistoricalMyDevice

FailureEventType

YourHistoricalDevice

FailureEventType

YourHistoricalYourDevice

FailureEventType

GeneratesEvents

GeneratesEvents

GeneratesEvents

Type

Definitons

Figure 3 – Representation of an Event with History in the AddressSpace

4.6.7 HistoricalEventNodes Attributes
This section lists the Attributes of Objects or Views that have particular importance for historical events. They are specified in detail in [UA Part 3]. The following Attributes are particularly important for HistoricalEventNodes.

· EventNotifier

The EventNotifier Attribute is used to indicate if the Node can be used to read and/or update historical Events.

4.7 History Objects
4.7.1 General

OPC UA servers can support several different functionalities and capabilities. The following standard Objects are used to expose these capabilities in a common fashion, and there are several standard defined concepts that can be extended by vendors.

4.7.2 HistoryServerCapabilitiesType

The ServerCapabilitiesType Objects for any OPC UA Server supporting Historical Access must contain a Reference to a HistoryServerCapabilitiesType Object.

The content of this BaseObjectType is already defined by its type definition in [UA Part 5]. The Object extensions are formally defined in Table 11.
These properties are intended to inform clients of the general expected capabilities of the server. They do not guarantee that all capabilities will be available for all nodes. For example not all nodes will support Events, or in the case of an aggregating server on of the multiple underlying servers may not support Insert or a particular Aggregate. In such cases the HistoryServerCapabilities property would indicate the capability is supported, and the server would return appropriate StatusCodes for situations the capability does not apply.
Table 11 – HistoryServerCapabilitiesType Definition

	Attribute
	Value

	BrowseName
	HistoryServerCapabilitiesType

	IsAbstract
	False

	References
	Node Class

	HasProperty
	Variable
	Browse Name
	Data Type
	Type Definition
	Instantiation Rule

	HasProperty
	Variable
	AccessHistoryDataCapability
	Boolean
	PropertyType
	Mandatory

	HasProperty
	Variable
	AccessEventsCapability
	Boolean
	PropertyType
	Mandatory

	HasProperty
	Variable
	MaxReturnValues
	UInt32
	PropertyType
	Mandatory

	HasProperty
	Variable
	InsertDataCapability
	Boolean
	PropertyType
	Mandatory

	HasProperty
	Variable
	ReplaceDataCapability
	Boolean
	PropertyType
	Mandatory

	HasProperty
	Variable
	UpdateCapability
	Boolean
	PropertyType
	Mandatory

	HasProperty
	Variable
	DeleteRawCapability
	Boolean
	PropertyType
	Mandatory

	HasProperty
	Variable
	DeleteAtTimeCapability
	Boolean
	PropertyType
	Mandatory

	HasComponent
	Object
	HistoryAggregates

	--
	FolderType
	Mandatory

All UA servers that support Historical data access must include the HistoryServerCapabilities as part of its ServerCapabilities. If any of these Properties do not contain a valid value, the client application should use the default values.

The AccessHistoryDataCapability Variable defines if the server supports access to historical data values. A value of True indicates the server supports access to history for HistoricalNodes, a value of False indicates the server does not support access to history for HistoricalNodes. The default value is False. At least one of AccessHistoryDataCapability or AccessEventsCapability must have a value of True for the server to be a valid OPC UA Server supporting Historical Access.

The AccessHistoryEventCapability Variable defines if the server supports access to historical events. A value of True indicates the server supports access to history of events, a value of False indicates the server does not support access to history of events. The default value is False. At least one of AccessHistoryDataCapability or AccessEventsCapability must have a value of True for the server to be a valid OPC UA Server supporting Historical Access.

The MaxReturnValues Variable defines maximum number of values that can be returned by the server for each HistoricalNode accessed during a request. A value of 0 indicates that the server forces no limit on the number of values it can return. It is valid for a server to limit the number of returned values and return a continuation point even if MaxReturnValues = 0. For example, it is possible that although the server does not impose any restrictions, the underlying system may impose a limit that the server is not aware of. The default value is 0.
The InsertDataCapability Variable indicates support for the Insert capability. A value of True indicates the server supports the capability to insert new values in history, but not overwrite existing values. The default value is False.
The ReplaceDataCapability Variable indicates support for the Replace capability. A value of True indicates the server supports the capability to replace existing values in history, but will not insert new values. The default value is False.
The UpdateCapability Variable indicates support for the Update capability. A value of True indicates the server supports the capability to insert new values into history if none exists, and replace values that currently exist. The default value is False.
The DeleteRawCapability Variable indicates support for the delete raw values capability. A value of True indicates the server supports the capability to delete raw values in history. The default value is False.
The DeleteAtTimeCapability Variable indicates support for the delete at time capability. A value of True indicates the server supports the capability to delete a value at a specified time. The default value is False.

HistoryAggregates is an entry point to browse to all Aggregate capabilities supported by the server for Historical Access. All HistoryAggregates supported by the Server should be able to be browsed starting from this Object. Defined in [UA Part 13]. If the Server does not support Aggregates the Folder is left empty.
4.7.3

	
	

	
	

	
	

	
	

	
	
	
	

	

	
	
	
	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

4.8 History DataType definitions

4.8.1 Annotation DataType

This DataType describes Annotation information for the history data items. Its elements are defined in Table 12.

Table 12 – Annotation Structure

	Name
	Type
	Description

	Annotation
	Structure
	

	 Message
	String
	Annotation message or text

	 username
	String
	The user that added the Annotation, as supplied by underlying system.

	 annotationTime
	UtcTime
	The time the Annotation was added. This will probably be different than the SourceTimestamp

Its representation in the AddressSpace is defined in Table 13.

Table 13 – Annotation Definition

	Attributes
	Value

	Browse Name
	Annotation

5 Historical Access specific usage of Services
5.1 General

[UA Part 4] specifies all Services needed for OPC UA Historical Access. In particular:

· The Browse Service Set or Query Service Set to detect HistoricalNodes and their configuration.
· The HistoryRead and HistoryUpdate Services of the Attribute Service Set to read and update history of HistoricalNodes.

5.2 Historical Nodes StatusCodes

5.2.1 Overview

This section defines additional codes and rules that apply to the StatusCode when used for HistoricalNodes.

The general structure of the StatusCode is specified in [UA Part 4]. It includes a set of common operational result codes which also apply to historical data and/or events.

5.2.2 Operation level result codes

In OPC UA Historical Access the StatusCode is used to indicate the conditions under which a Value or Event was stored, and thereby can be used as an indicator it’s usability. Due to the nature of historical data and/or events, additional information beyond the basic quality and call result code needs to be conveyed to the client. For example, whether the value is actually stored in the data repository, was the result Interpolated, were all data inputs to a calculation of good quality, etc.

In the following, Table 14 contains codes with Bad severity indicating a failure; Table 15Table 15 contains Good (success) codes. It is Important to note, that these are the codes that are specific for OPC UA Historical Access and supplement the codes that apply to all types of data and are therefore defined in [UA Part 4] and [UA Part 8].
Table 14 – Bad operation level result codes

	Symbolic Id
	Description

	Bad_NoData
	No data exists for the requested time range or event filter

	Bad_NoBound
	No data found to provide upper or lower bound value.

	Bad_DataLost
	Data is missing due to collection started / stopped / lost.

	Bad_DataUnavailable
	Expected data is unavailable for the requested time range due to an un-mounted volume, an off-line archive or tape, or similar reason for temporary unavailability.

	Bad_EntryExists
	The data or event was not successfully inserted because a matching entry exists.

	Bad_NoEntryExists
	The data or event was not successfully updated because no matching entry exists.

	Bad_TimestampNotSupported
	The client requested history using a timestamp format the server does not support (i.e requested ServerTimestamp when server only supports SourceTimestamp)

	Bad_AggregateListMismatch
	The requested number of Aggregates does not match the requested number of NodeIds. When multiple Aggregates are requested, a corresponding NodeId is required for each Aggregate.

	
	

	
	

Table 15 – Good operation level result codes

	Symbolic Id
	Description

	Good_NoData
	No data exists for the requested time range or event filter.

	Good_MoreData
	There is more data to be returned than could be returned in a single request.

	Good_EntryInserted
	The data or event was successfully inserted into the historical database

	Good_EntryReplaced
	The data or event field was successfully replaced in the historical database

5.2.3

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

5.2.4 Semantics changed

The StatusCode in addition contains an informational bit called Semantics Changed. (See [UA Part 4])
UA Servers that implement OPC UA Historical Access should not set this Bit, rather propagate the StatusCode which has been stored in the data repository. Clients should be aware that the returned data values may have this bit set.

5.3 HistoryReadDetails parameters

5.3.1 Overview

The HistoryRead service defined in [UA Part 4] can perform several different functions. The historyReadDetails parameter is an Extensible Parameter that specifies which function to perform and the details that are specific to that function. See [UA Part 4] for the definition of Extensible Parameter. Table 16 lists the symbolic names of the valid Extensible Parameter structures. Some structures will perform different functions based on the setting of its associatied parameters. For simplicity a functionality of each structure is listed. For example text such as ‘using the Read modified functionality’ refers to the function the HistoryRead service performs using the Extensible Parameter structure ReadRawModifiedDetails with the isReadModified Boolean parameter set to TRUE.
Table 16 – HistoryReadDetails functionality
	Symbolic Name
	Functionality
	Description

	ReadEventDetails
	Read event
	This structure selects a set of events from the history database by specifying a filter and a time domain for one or more Objects or Views. See Clause 5.3.2.1

	ReadRawModifiedDetails
	Read raw
	This structure selects a set of values from the history database by specifying a time domain for one or more Variables. See Clause 5.3.3.2

	ReadRawModifiedDetails
	Read modified
	This parameter selects a set of modified values from the history database by specifying a time domain for one or more Variables. See Clause 0

	ReadProcessedDetails
	Read processed
	This structure selects a set of aggregate values from the history database by specifying a time domain for one or more Variables.

	ReadAtTimeDetails
	Read at time
	This structure selects a set of raw or interpolated values from the history database by specifying a series of timestamps for one or more Variables.

5.3.2 ReadEventDetails structure
5.3.2.1 ReadEventDetails structure details
Table 17 defines the ReadEventDetails structure. This parameter is only valid for Objects that have the EventNotifier attribute set to TRUE (See [UA Part 3]). Two of the three parameters, numValuesPerNode, startTime, and endTime must be specified.
Table 17 – ReadEventDetails
	Name
	Type
	Description

	ReadEventDetails
	Structure
	Specifies the details used to perform an event history read.

	
numValuesPerNode
	Counter
	The maximum number of values returned for any node over the time range. If only one time is specified, the time range must extend to return this number of values. The default value of 0 indicates that there is no maximum.

	
startTime
	UtcTime
	Beginning of period to read. The default value of DateTime.Min indicates that there is no start time.

	
endTime
	UtcTime
	End of period to read. The default value of DateTime.Min indicates that there is no end time.

	
filter
	EventFilter
	A filter used by the Server to determine which HistoricalEventNode should be included. This parameter must be specified and at least one EventField is required. The EventFilter parameter type is an extensible parameter type. It is defined and used in the same manner as defined for monitored data items which are specified [UA Part 4]. This filter also specifies the EventFields that are to be returned as part of the request.

5.3.2.2 Read event functionality
ReadEventDetails structure is used to read the events from the history database for the specified time domain for one or more HistoricalEventNodes. The events are filtered based on the filter structure provided. This filter includes the eventFields that are to be returned. For a complete description of filter refer to [UA Part 4],.

The time domain of the request is defined by startTime, endTime, and numValuesPerNode; at least two of these must be specified. If endTime is less than startTime, or endTime and numValuesPerNode alone are specified, the data will be returned in reverse order, with later data coming first, as if time were flowing backward. If all three are specified, the call shall return up to numValuesPerNode results going from startTime to endTime, in either ascending or descending order depending on the relative values of startTime and endTime. If numValuesPerNode is 0, then all the values in the range are returned. The default value is used to indicate when startTime, endTime or numValuesPerNode is not specified.

It is specifically allowed for the startTime and the endTime to be identical. This allows the client to request the event at a single instance in time. When the startTime and endTime are identical, time is presumed to be flowing forward. If no data exists at the time specified then the server must return the Good_NoData StatusCode.

If more than numValuesPerNode results exist within that time range, the StatusCode returned for that Variable must be Good_MoreData, and the continuationPoint must be returned. When Good_MoreData is returned, clients wanting the next numValuesPerNode values should call HistoryRead again with the continuationPoint.

For an interval in which no data exists, the corresponding StatusCode shall be Good_NoData.
The filter parameter is used to determine which historical events and their corresponding fields are returned. It is possible that the fields of an EventType are available for real time updating, but not available from the historian. In this case a StatusCode value will be returned for any Event field that cannot be returned. The value of the StatusCode must be Bad_NoData.
If the requested timestamp format is not supported for a Node, the operation shall return the Bad_TimestampNotSupported StatusCode. When reading Events this only applies to Event fields that are of type DataValue.
5.3.3 ReadRawModifiedDetails structure

5.3.3.1 ReadRawModifiedDetails structure details
Table 18 defines the ReadRawDetails structure. Two of the three parameters, numValuesPerNode, startTime, and endTime must be specified.

Table 18 – ReadRawModifiedDetails
	Name
	Type
	Description

	ReadRawModifiedDetails
	Structure
	Specifies the details used to perform a “raw” or “modified” history read.

	
isReadModified
	Boolean
	TRUE for Read Modified functionality, FALSE for Read Raw functionality. Default value is FALSE.

	
startTime
	UtcTime
	Beginning of period to read. Set to default value of DateTime.Min if no specific start time is specified.

	
endTime
	UtcTime
	End of period to read. Set to default value of DateTime.Min if no specific end time is specified.

	
numValuesPerNode
	Counter
	The maximum number of values returned for any node over the time range. If only one time is specified, the time range must extend to return this number of values. The default value 0 indicates that there is no maximum.

	
returnBounds
	Boolean
	A boolean parameter with the following values :

TRUE
bounding values should be returned

FALSE
all other cases.

5.3.3.2 Read raw functionality
When this structure is used for reading Raw Values (isReadModified is set to FALSE); it reads the values, qualities, and timestamps from the history database for the specified time domain for one or more HistoricalDataNodes. This parameter is intended for use by clients wanting the actual data saved within the historian. The actual data may be compressed or may be all data collected for the item depending on the historian and the storage rules invoked when the item values were saved. When returnBounds is TRUE, the bounding values for the time domain are returned. The optional bounding values are provided to allow clients to interpolate values for the start and end times when trending the actual data on a display.

The time domain of the request is defined by startTime, endTime, and numValuesPerNode; at least two of these must be specified. If endTime is less than startTime, or endTime and numValuesPerNode alone are specified, the data will be returned in reverse order, with later data coming first, as if time were flowing backward. If all three are specified, the call shall return up to numValuesPerNode results going from startTime to endTime, in either ascending or descending order depending on the relative values of startTime and endTime. If numValuesPerNode is 0, then all the values in the range are returned. A default value of DateTime.Min is used to indicate when startTime or endTime is not specified.

It is specifically allowed for the startTime and the endTime to be identical. This allows the client to request just one value. When the startTime and endTime are identical, time is presumed to be flowing forward. It is specifically not allowed for the server to return an Bad_InvalidArgument StatusCode if the requested time domain is outside of the server's range. Such a case shall be treated as an interval in which no data exists.

If more than numValuesPerNode results exist within that time range, the StatusCode entry for that variable shall be Good_MoreData, and the continuationPoint will be set. When Good_MoreData is returned, clients wanting the next numValuesPerNode values should call ReadRaw again with the continuationPoint set.
If bounding values are requested and a non-zero numValuesPerNode was specified, any bounding values returned are included in the numValuesPerNode count. If numValuesPerNode is 1, then only the start bound is returned (the End bound if reverse order is needed). If numValuesPerNode is 2, the start bound and the first data point is returned (the End bound if reverse order is needed).

When bounding values are requested and no bounding value is found, the corresponding StatusCode entry will be set to Bad_NoBound, a timestamp equal to the start or end time, as appropriate, and a value of Null. How far back or forward to look in history for bounding values is server dependent.

For an interval in which no data exists, if bounding values are not requested, the corresponding StatusCode must be Good_NoData. If bounding values are requested and one or both exist, the result code returned is Success and the bounding value(s) are returned.
For cases where there are multiple values for a given timestamp, all but the most recent are considered to be Modified values and the server must return the most recent value. If the server returns a value which hides other values at a timestamp then it must set the ExtraData bit in the StatusCode associated with that value.
If the requested timestamp format is not supported for a Node, the operation shall return the Bad_TimestampNotSupported StatusCode.
5.3.3.3 Read modified functionality
When this structure is used for reading Modified Values (isReadModified is set to TRUE); it reads the values, StatusCodes, timestamps, user identifier, and timestamp of the modification from the history database for the specified time domain for one or more HistoricalDataNodes. If there are multiple replaced values the server must return all of them.

The purpose of this function is to read values from history that have been Modified If ReadRaw, ReadProcessed, or ReadAtTime has returned a StatusCode of with the ExtraData bit set then there are values which have been superseded in the history database. This parameter allows clients to read those values which were superseded. Only values that have been modified/replaced or deleted are read by this function

The domain of the request is defined by startTime, endTime, and numValuesPerNode; at least two of these must be specified. If endTime is less than startTime, or endTime and numValuesPerNode alone are specified, the data shall be returned in reverse order, with later data coming first. If all three are specified, the call shall return up to numValuesPerNode results going from StartTime to EndTime, in either ascending or descending order depending on the relative values of StartTime and EndTime. If more than numValuesPerNode results exist within that time range, the StatusCode entry for that variable shall be Good_MoreData. If numValuesPerNode is 0, then all the values in the range are returned.

If a value has been modified multiple times, all values for the time are returned. This means that a timestamp can appear in the array more than once. The order of the returned values with the same timestamp should be from most recent to oldest modified value, if startTime is less than or equal to endTime. If endTime is less than startTime, the order of the returned values will be from oldest modified value to most recent. It is server dependent whether multiple modifications are kept or only the most recent.
If the requested timestamp format is not supported for a Node, the operation shall return the Bad_TimestampNotSupported StatusCode.
5.3.4 ReadProcessedDetails structure
5.3.4.1 ReadProcessedDetails structure details
Table 19 defines the structure of the ReadProcessedDetails structure.
Table 19 – ReadProcessedDetails
	Name
	Type
	Description

	ReadProcessedDetails
	Structure
	Specifies the details used to perform a “processed” history read

	
	
	

	
startTime
	UtcTime
	Beginning of period to read.

	
endTime
	UtcTime
	End of period to read.

	
resampleInterval
	Duration
	Interval between returned Aggregate values. The value 0 indicates that there is no interval defined.

	
aggregateType[]
	NodeId
	The NodeId of the HistoryAggregate object that indicates the list of Aggregates to be used when retrieving processed history. See [UA Part 13] for details.

	
aggregateConfiguration
	Structure
	Aggregate configuration structure

	

UseSeverCapabilitiesDefaults
	Boolean
	If value = TRUE use Aggregate configuration settings as outlined by the AggregateConfiguration object. If value=FALSE use configuration settings as outlined in the follpwing aggregateConfiguration parameters. Default is TRUE.

	

TreatUncertainAsBad
	Boolean
	As described in [[UA Part 13]

	

PercentDataBad
	UInt8
	As described in [UA Part 13]

	

PercentDataGood
	UInt8
	As described in [[UA Part 13]

	

SteppedSlopedExtrapolation
	Boolean
	As described in [UA Part 13]

See [UA Part 13] for details on possible NodeId values for the HistoryAggregateType parameter.
Read processed functionality
This structure is used to compute Aggregate values, qualities, and timestamps from data in the history database for the specified time domain for one or more HistoricalDataNodes. The time domain is divided into subintervals of duration resampleInterval. The specified aggregateType is calculated for each subinterval beginning with startTime by using the data within the next resampleInterval.

For example, this function can provide hourly statistics such as Maximum, Minimum, Average, etc. for each item during the specified time domain when resampleInterval is 1 hour.

The domain of the request is defined by startTime, endTime, and resampleInterval. All three must be specified. If endTime is less than startTime, the data shall be returned in reverse order, with later data coming first. If startTime and endTime are the same, the server shall return Bad_InvalidArgument, as there is no meaningful way to interpret such a case.
The aggregateType[] parameter allows clients to request multiple
Aggregate calculations per requested NodeId. If multiple Aggregates are requested, then a corresponding number of entries are required in the NodesToRead array. For example to request Min and Max Aggregates for NodeId FIC101, would require NodeId FIC101 to appear twice in the NodesToRead array request parameter.
The aggregateConfiguration parameter allows clients to override the Aggregate configuration settings supplied by the AggregateConfiguration object on a per call basis. See [UA Part 13] for more information on Aggregate configurations. If the Server does not support the ability to override the Aggregate configuration settings it shall return a StatusCode of Bad_AggregateListMismatch
The values used in computing the Aggregate for each subinterval shall include any value that falls exactly on the timestamp beginning the subinterval, but shall not include any value that falls directly on the timestamp ending the subinterval. Thus, each value shall be included only once in the calculation. If the time domain is in reverse order, we consider the later timestamp to be the one beginning the subinterval, and the earlier timestamp to be the one ending it. Note that this means that simply swapping the start and end times will not result in getting the same values back in reverse order, as the subintervals being requested in the two cases are not the same.

If the last subinterval computed is not a complete subinterval (the time domain of the request is not evenly divisible by the resample interval), the last Aggregate returned shall be based upon that incomplete subinterval, and the corresponding StatusCode bit shall be Partial.

For MinimumActualTime and MaximumActualTime, if more than one instance of the value exists within a subinterval, which instance (time stamp) of the value returned is server dependent. In any case, the server must set the MultipleValue bit in the StatusCode to let the caller know that there are other timestamps with that value.

If resampleInterval is 0, the server must create one Aggregate value for the entire time range. This allows Aggregates over large periods of time. A value with a timestamp equal to endTime will be excluded from that Aggregate, just as it would be excluded from a subinterval with that ending time.

The timestamp returned with the Aggregate must be the time at the beginning of the interval, except where the Aggregate specifies a different value.
For all Aggregates that do not specify otherwise the following rule applies to determining the status associated with a given computed value. If the percentage of the values used in computing the Aggregate value that have Good quality meets or exceeds the PercentDataGood parameter, the StatusCode of the Aggregate must be Good. If the percentage of the values used in computing the Aggregate value that have Bad quality meets or exceeds the PercentDataBad parameter, the StatusCode of the Aggregate must be Bad. Otherwise the StatusCode of the Aggregate must be Uncertain_DataSubNormal.

If no data exists for a given HistoricalDataNode in any subinterval in the time domain, the server shall return Bad_NoData in the StatusCode for that HistoricalDataNode.

If data does exist in at least one subinterval for that HistoricalDataNode, the server shall return a timestamp, StatusCode, and value for each subinterval in the time domain.
If the requested timestamp format is not supported for a Node, the operation shall return the Bad_TimestampNotSupported StatusCode.
5.3.5 ReadAtTimeDetails structure

ReadAtTimeDetails structure details

Table 20 defines the ReadAtTimeDetails structure.

Table 20 – ReadAtTimeDetails
	Name
	Type
	Description

	ReadAtTimeDetails
	Structure
	Specifies the details used to perform an “at time” history read

	
	
	

	
reqTimes []
	UtcTime
	The entries define the specific timestamps for which values are to be read.

Read at time functionality

The ReatAtTimeDetails structure reads the values and qualities from the history database for the specified timestamps for one or more HistoricalDataNodes. This function is intended to provide values to correlate with other values with a known timestamp. For example, a client may need to read the values of sensors when lab samples were collected.

The order of the values and qualities returned shall match the order of the time stamps supplied in the request.

When no value exists for a specified timestamp, a value shall be Interpolated from the surrounding values to represent the value at the specified timestamp. The interpolation will follow the same rules as the standard Interpolated Aggregate as outlined in [UA Part 13]
If a value is found for the specified timestamp, the server will set the StatusCode InfoBits to be Raw. If the value is Interpolated from the surrounding values, the server will set the StatusCode InfoBits to be Interpolated.
If the requested timestamp format is not supported for a Node, the operation shall return the Bad_TimestampNotSupported StatusCode.
5.4 HistoryData parameters

5.4.1 Overview

The HistoryRead service returns different types of data depending on whether the request asked for the value attribute of a node or the history events of a node. The historyData is an Extensible Parameter whose structure depends on the functions to perform for the historyReadDetails parameter. See [UA Part 4] for details on Extensible Parameters.

5.4.2 HistoryData type

Table 21 defines the structure of the HistoryData used for the data to return in a HistoryRead.

Table 21 – HistoryData Details

	Name
	Type
	Description

	dataValue[]
	DataValue
	An array of values of history data for the node. The size of the array depends on the requested data parameters.

5.4.3 HistoryEvent type

Table 22 defines the HistoricalNotificationData parameter used for Historical Event reads.

The HistoricalEventNotification defines a table structure that is used to return Event fields to a Historical Read. The structure is in the form of a table consisting of one or more Events, each containing an array of one or more fields. The selection and order of the fields returned for each Event is identical to the selected parameter of the EventFilter.

Table 22 – HistoryEvent Details
	Name
	Type
	Description

	Events []
	HistoricalEventFieldList
	The list of Events being delivered

	
eventFields []
	BaseDataType
	List of selected Event fields. This will be a one to one match with the fields selected in the EventFilter.

5.5 HistoryUpdateDetails parameter

5.5.1 Overview

The HistoryUpdate service defined in [UA Part 4] can perform several different functions. The historyUpdateDetails parameter is an Extensible Parameter that specifies which function to perform and the details that are specific to that function. See [UA Part 4] for the definition of Extensible Parameter. Table 23 lists the symbolic names of the valid Extensible Parameter structures. Some structures will perform different functions based on the setting of its associatied parameters. For simplicity a functionality of each structure is listed. For example text such as ‘using the Replace data functionality’ refers to the function the HistoryUpdate service performs using the Extensible Parameter structure UpdateDataDetails with the performInsertReplace enumeration parameter set to REPLACE_2
Table 23 – HistoryUpdateDetails functionality
	Symbolic Name
	Functionality
	Description

	UpdateDataDetails
	Insert data
	This function inserts new values into the history database at the specified timestamps for one or more HistoricalDataNodes.

The variable’s value is represented by a composite value defined by the DataValue data type.

	UpdateDataDetails
	Replace data
	This function replaces existing values into the history database at the specified timestamps for one or more HistoricalDataNodes. .

The variable’s value is represented by a composite value defined by the DataValue data type.

	UpdateDataDetails
	Update data
	This function inserts or replaces values into the history database at the specified timestamps for one or more HistoricalDataNodes. .

The variable’s value is represented by a composite value defined by the DataValue data type.

	UpdateEventDetails
	Insert events
	This function inserts new events into the history database for one or more HistoricalEventNodes.

	UpdateEventDetails
	Replace events
	This function replaces values of fields in existing events into the history database for one or more HistoricalEventNodes.

	UpdateEventDetails
	Update events
	This function inserts new events or replaces values of fields in existing events into the history database for one or more HistoricalEventNodes.

	DeleteRawModifiedDetails
	Delete raw
	This function deletes all values from the history database for the specified time domain for one or more HistoricalDataNodes.

	DeleteRawModifiedDetails
	Delete modified
	Some historians may store multiple values at the same Timestamp. This function will delete specified values and qualities for the specified timestamp for one or more HistoricalDataNodes.

	DeleteAtTimeDetails
	Delete at time
	This function deletes all values in the history database for the specified timestamps for one or more HistoricalDataNodes.

	DeleteEventDetails
	Delete event
	This function deletes events from the history database for the specified filter for one or more HistoricalEventNodes.

The HistoryUpdate service is used to update or delete both DataValues and Events. For simplicity the term “entry” will be used to mean either DataValue or Event depending on the context in which it is used. Auditing requirements for History services is described in [UA Part 4]. This description assumes the user issuing the request and the server that is processing the request, support the capability to update entries. See [UA Part 3] for a description of Attributes that expose the support of Historical Updates.
5.5.2 UpdateDataDetails structure

5.5.2.1 UpdateDataDetails structure details
Table 24 defines the UpdateDataDetails structure.
Table 24 – UpdateDataDetails
	Name
	Type
	Description

	UpdateDataDetails
	Structure
	The details for insert, replace, and insert/replace history updates.

	
nodeId
	NodeId
	Node id of the variable to be updated.

	
performInsertReplace
	Enumeration
	Value determines which action of insert, replace, or update is performed.
Value

Description

INSERT_1

Perform Insert data (See Clause 5.5.2.2)
REPLACE_2

Perform Replace data (See Clause 5.5.2.3)
UPDATE_3

Perform Update data (See Clause 5.5.2.4)

	
updateValue
	historyData
	New value to be inserted or replaced

5.5.2.2 Insert data functionality
Setting perfomInsertReplace = INSERT_1 inserts entries into the history database at the specified timestamps for one or more HistoricalDataNodes. If an entry exists at the specified timestamp, the new entry shall not be inserted; instead the StatusCode shall indicate Bad_EntryExists.

This function is intended to insert new entries at the specified timestamps; e.g., the insertion of lab data to reflect the time of data collection.

5.5.2.3 Replace data functionality
Setting perfomInsertReplace = REPLACE_2 replaces entries in the history database at the specified timestamps for one or more HistoricalDataNodes. If no entry exists at the specified timestamp, the new entry shall not be inserted; otherwise the StatusCode shall indicate Bad_NoEntryExists.

This function is intended to replace existing entries at the specified timestamp; e.g., correct lab data that was improperly processed, but inserted into the history database.

5.5.2.4 Update data functionality
Setting perfomInsertReplace = UPDATE_3 inserts or replaces entries in the history database for the specified timestamps for one or more HistoricalDataNodes. If the item has a entry at the specified timestamp, the new entry will replace the old one. If there is no entry at that timestamp, the function will insert the new data.
This function is intended to unconditionally insert/replace values and qualities; e.g., correction of values for bad sensors.

Good as a StatusCode for an individual entry is allowed when the server is unable to say whether there was already a value at that timestamp. If the server can determine whether the new entry replaces a entry that was already there, it should use Good_EntryInserted or Good_EntryReplaced to return that information.

5.5.3 UpdateEventDetails structure
5.5.3.1 UpdateEventDetails structure detail
Table 25 defines the UpdateEventDetails structure.

Table 25 – UpdateEventDetails

	Name
	Type
	Description

	UpdateEventDetails
	Structure
	The details for insert, replace, and insert/replace history event updates.

	
nodeId
	NodeId
	Node id of the Node to be updated.

	
performInsertReplace
	Enumeration
	Value determines which action of insert, replace, or update is performed.
Value

Description

INSERT_1

Perform Insert event (See Clause 5.5.3.2)
REPLACE_2

Perform Replace event (See Clause 5.5.3.3)
UPDATE_3

Perform Update event (See Clause 5.5.3.4)

	 filter
	EventFilter
	If the history of Notification conforms to the EventFilter, the history of the Notification is updated.

	 eventData[]
	HistoricalEventFieldList[]
	Events Notification data to be inserted or updated.

5.5.3.2 Insert event functionality
Setting performInsertReplace = INSERT_1 inserts entries into the event history database for one or more HistoricalEventNodes. The whereClause parameter of the EventFilter must specify the EventId Property. If any entry exists matching the specified filter, the new entry shall not be inserted; instead StatusCode shall indicate Bad_EntryExists.

If the new entry is incomplete or not correctly specified in the EventNotification, the server may return a StatusCode of Bad_InvalidArgument.

This function is intended to insert new entries; e.g., backfilling of historical events.

5.5.3.3 Replace event functionality
Setting performInsertReplace = REPLACE_2replaces entries in the event history database for the specified filter for one or more HistoricalEventNodes. The whereClause parameter of the EventFilter must specify the EventId Property. If no entry exists matching the specified filter, the new entry shall not be inserted; otherwise the StatusCode shall indicate Bad_NoEntryExists.

If the new entry is incomplete or not correctly specified in the EventNotification, the server may return a StatusCode of Bad_InvalidArgument.

This function is intended to replace fields in existing event entries; e.g., correct event data that contained incorrect data due to a bad sensor.

5.5.3.4 Update event functionality
Setting performInsertReplace = UPDATE_3 inserts or replaces entries in the event history database for the specified filter for one or more HistoricalEventNodes. The whereClause parameter of the EventFilter must specify fields to uniquely identify the event (i.e. EventId or combination of identifying fields). If any entry at exists matching the specified filter, the new event data will replace the existing data. If no matching entry is found, the function will insert the new event.

This function is intended to unconditionally insert/replace events; e.g., synchronizing a backup event database.
Good as a StatusCode for an individual entry is allowed when the server is unable to say whether there was already an existing value. If the server can determine whether the new entry replaces an existing, it should use Good_EntryInserted or Good_EntryReplaced to return that information.

5.5.4 DeleteRawModifiedDetails structure
5.5.4.1 DeleteRawModifiedDetails structure detail
Table 26 defines the DeleteRawModifiedDetails structure.
Table 26 – DeleteRawModifiedDetails
	Name
	Type
	Description

	DeleteRawModifiedDetails
	structure
	The details for delete raw and delete modified history updates.

	
nodeId
	NodeId
	Node id of the variable for which history values are to be deleted.

	
isDeleteModified
	Boolean
	TRUE for MODIFIED, FALSE for RAW. Default value is FALSE.

	
	
	

	
startTime
	UtcTime
	beginning of period to be deleted

	
endTime
	UtcTime
	end of period to be deleted

These functions are intended to be used to delete data that has been accidentally entered into the history database; e.g., deletion of data from a source with incorrect timestamps.

5.5.4.2 Delete raw functionality
Setting isDeletedModified = FALSE deletes all Raw entries from the history database for the specified time domain for one or more HistoricalDataNodes.
If no data is found in the time range for a particular HistoricalDataNode, the StatusCode for that item is Bad_NoData.
Delete modified functionality

Setting isDeleteModified = TRUE deletes all Modified entries from the history database for the specified time domain for one or more HistoricalDataNodes.

If no data is found in the time range for a particular HistoricalDataNode, the StatusCode for that item is Bad_NoData.
5.5.5 DeleteAtTimeDetails structure

DeleteAtTimeDetails structure detail

Table 27 defines the structure of the DeleteAtTimeDetails structure.
Table 27 – DeleteAtTimeDetails
	Name
	Type
	Description

	DeleteAtTimeDetails
	Structure
	The details for delete raw history updates

	
nodeId
	NodeId
	Node id of the variable for which history values are to be deleted.

	
reqTimes []
	UtcTime
	The entries define the specific timestamps for which values are to be deleted.

Delete at time functionality

The DeleteAtTime structure deletes all entries in the history database for the specified timestamps for one or more HistoricalDataNodes.

This parameter is intended to be used to delete specific data from the history database; e.g., lab data that is incorrect and cannot be correctly reproduced.

5.5.6 DeleteEventDetails structure
5.5.7 DeleteEventDetails structure detail
Table 27 defines the structure of the DeleteEventDetails structure.

Table 28 – DeleteEventDetails

	Name
	Type
	Description

	DeleteEventDetails
	structure
	The details for delete raw and delete modified history updates.

	 nodeId
	NodeId
	Node id of the variable for which history values are to be deleted.

	
eventId[]
	ByteString
	An array of EventIds to identify which events are to be deleted.

Delete event functionality

The DeleteEventDetails structure deletes all event entries from the history database matching the EventId for one or more HistoricalEventNodes.

If no events are found that match the specified filter for a HistoricalEventNode, the StatusCode for that Node is Bad_NoData.

5.6

5.6.1

5.6.2
5.6.2.1

5.6.2.2

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

5.6.2.3

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

5.6.2.4

5.6.3
5.6.3.1

5.6.3.2

·
·
·
·
·
·
·
5.6.3.3

5.6.3.4

5.6.3.5

5.6.3.6

5.6.3.7

5.6.3.8

5.6.3.9

5.6.3.10

5.6.3.11

5.6.3.12

5.6.3.13

5.6.3.14

5.6.3.15

5.6.3.16

5.6.3.17

5.6.3.18

5.6.3.19

5.6.3.20

5.6.3.21

5.6.3.22

5.6.3.23

5.6.3.24

Annex A Client Conventions

A.1 How clients may request timestamps

The OPC HDA COM based specifications allowed clients to programmatically request historical time periods as absolute time (Jan 01, 2006 12:15:45) or a string representation of relative time (NOW -5M). The OPC UA specification does not allow for using a string representation to pass date/time information using the standard services.
OPC UA client applications that wish to visually represent date/time in a relative string format must convert this string format to UTC DateTime values before sending requests to the UA server. It is recommended that all OPC UA clients use the syntax defined in this section to represent relative times in their user interfaces.

The format for the relative time is:

keyword+/-offset+/-offset…

where keyword and offset are as specified in the table below. Whitespace is ignored. The time string must begin with a keyword. Each offset must be preceded by a signed integer that specifies the number and direction of the offset. If the integer preceding the offset is unsigned, the value of the preceding sign is assumed (beginning default sign is positive). The keyword refers to the beginning of the specified time period. DAY means the timestamp at the beginning of the current day (00:00 hours, midnight), MONTH means the timestamp at the beginning of the current month, etc.

For example, “DAY -1D+7H30M” could represent the start time for data requested for a daily report beginning at 7:30 in the morning of the previous day (DAY = the first timestamp for today, -1D would make it the first timestamp for yesterday, +7H would take it to 7 a.m. yesterday, +30M would make it 7:30 a.m. yesterday (the + on the last term is carried over from the last term).

Similarly, “MONTH-1D+5H” would be 5 a.m. on the last day of the previous month, “NOW-1H15M” would be an hour and fifteen minutes ago, and “YEAR+3MO” would be the first timestamp of April 1 this year.

Resolving relative timestamps is based upon what Microsoft has done with Excel, thus for various questionable time strings, we have these results:

10-Jan-2001 + 1 MO = 10-Feb-2001

29-Jan-1999 + 1 MO = 28-Feb-1999

31-Mar-2002 + 2 MO = 30-May-2002

29-Feb-2000 + 1 Y = 28-Feb-2001

In handling a gap in the calendar (due to different numbers of days in the month, or in the year), when one is adding or subtracting months or years:

 Month: if the answer falls in the gap, it is backed up to the same time of day on the last day of the month.

Year:
if the answer falls in the gap (February 29), it is backed up to the same time of day on February 28.

Note that the above does not hold for cases where one is adding or subtracting weeks or days, but only when adding or subtracting months or years, which may have different numbers of days in them.

Note that all keywords and offsets are specified in uppercase.

Table 29 –Time Keyword Definitions

	Keyword
	Description

	NOW
	The current UTC time as calculated on the server.

	SECOND
	The start of the current second.

	MINUTE
	The start of the current minute.

	HOUR
	The start of the current hour.

	DAY
	The start of the current day.

	WEEK
	The start of the current week.

	MONTH
	The start of the current month.

	YEAR
	The start of the current year.

Table 30 –Time Offset Definitions

	Offset
	Description

	S
	Offset from time in seconds.

	M
	Offset from time in minutes.

	H
	Offset from time in hours.

	D
	Offset from time in days.

	W
	Offset from time in weeks.

	MO
	Offset from time in months.

	Y
	Offset from time in years.

A.2 Converting Historical Timestamps Across Timezones

Starting in the spring of 2007, DST start dates and end dates for the United States and Canada changed to comply with the Energy Policy Act of 2005.

Microsoft released the 2007 time zone update package (update 944340) for this change. The operating system uses the new DST settings. Two system time-zone-related APIs use current time zone information to convert time from Coordinated Universal Time (UTC) to local time. These APIs are the following:

· SystemTimeToTzSpecificLocalTime

· TzSpecificLocalTimeToSystemTime

A.3 The hotfix changes the DST behavior to be dynamic and backward-compatible with the old DST standards in years that are earlier than 2007. The operating system determines whether the current time zone has dynamic DST keys. If the time zone has dynamic DST keys, the operating system uses the TZI value for the specific year instead of the TZI value of the current year.

�Moved to Part 13

�Following four sections moved to Part 13

�The properties TreatUncertainAsBad, PercentDataBad, PercentDataGood and SteppedSlopedExtrrapolation have be deleted from here and added as an AggregateConfigurationType object defined in Part 13. New object reference added to HistoricalConfigurationType

Even if a server does not support aggregates, servers must fill in the object with the defaults.

�

The UA client will need a hint on the TimeDomain which is covered by a specific HistoricalConfiguration. This information can either be provided through these optional properties or by additional aggregates StartTime and Endtime.

Peh - I would include the addition object type and refernce type allow a server to expose what ever it is able to. Some servers can provide quite a bit other may only be able to provide an initial start time, but this could even be difficult in some cases

EJM – These changes need more thought and planning. The scope is bigger than a maintenance release and will be deferred until v2.0

Issue added to Mantis #264 as V2.0 Enhancements.

�Part 3 does not have defined a ReferenceType HistoricalEvents!

TO DO: Paul to update text description

�Do we need this reference here? I think yes. There will be an Aggregates reference from the general ServerCapabilities object to show what Aggregates are supported. We can mandata that any supported Aggregate mean supported for MonitoredItems and History. In order to have all history configuration in one place, this can be mandated to point to the same reference. Alternately we can choose to say that a server can support to Aggreagate lists, one for Monitored items and one for history.

ConCall – Oct 10/08 – Yes support real-time and history aggregates. Two lists.

If Aggregates are not supported the Folder is left empty.

�Sections moved to Part 13

�Moved to Part 13

�Section moved to Part 13

�Remove duplicate text. Modified is a defined term and ExtraBit handling is explained in main Clause.

�Replace references to Symbolic ID text

�Paul to add more clarification text.

�Entire Aggregate Details section moved to Part 13

_1209466600.vsd
Operator
Station 2

Operator
Display

OPC HDA Server

Event
Logger, etc.

OPC UA HA Server

server

client

Proprietary Data Server

OPC UA HA Server

OPC A&E Server

OPC DA Server

_1285154851.vsd
Variable

Object

Object

Asymmetric
Reference

Object

HasHistorical Configuration

HistoricalConfiguration1

Instance

HistoricalConfigurationType

Type Definitons

Pressure (Variable)

Attribute
Value
DataType
AccessLevel
Historizing

Boiler_01 (Object)

HasAnnotation

Annotation

_1225080654.vsd
Object

ObjectType

Asymmetric
Reference

Server

BaseEventType

Instance

HasHistorical  EventConfiguration

PlantArea1

Boiler1

HistoricalEventConfiguration1

HistoricalEventConfiguration2

HasHistorical  EventConfiguration

HasHistorical  EventConfiguration

MyHistoricalEventConfigurationType

HistoricalEventConfigurationType

AuditEvent
Type

SystemEvent
Type

MyHistoricalSystem
EventType

YourHistoricalSystem
EventType

AuditSecurity
EventType

Auditupdate
EventType

AuditChannel
EventType

AuditSession
EventType

DeviceFailure
EventType

RefreshStart
EventType

RefreshEnd
EventType

RefreshRequired
EventType

MyDeviceFailure
EventType

MyHistoricalDevice
FailureEventType

MyHistoricalMyDevice
FailureEventType

YourHistoricalDeviceFailureEventType

YourHistoricalYourDevice
FailureEventType

GeneratesEvents

GeneratesEvents

GeneratesEvents

Type Definitons

_1175523667.doc

F O U N D A T I O N

®

